Text Mining Applications Using Real - World Data in Python Orhan Abar

Text Mining Applications Using Real - World Data in Python

Over the last two decades, the amount of existing data sources in the world have dramatically increased due largely to digitalization. In parallel, data analysis has become a crucial topic for researchers in many areas. One of the essential perspectives...
Stokta var
Kargo Ücreti: 75,00 TL
indirimli
123,20TL
Taksitli fiyat: 9 x 16,15TL
Havale/EFT ile: 120,74TL
9786254391736
1158356
Text Mining Applications Using Real - World Data in Python
Text Mining Applications Using Real - World Data in Python
123.20

Over the last two decades, the amount of existing data sources in the world have dramatically increased due largely to digitalization. In parallel, data analysis has become a crucial topic for researchers in many areas. One of the essential perspectives in data analysis is text mining. In various forms, textual data is the most generated data element compared to multimedia data. Since the available data sizes are exponentially increasing, we need intelligent computational methodologies to handle massive datasets. Data mining approaches, specifically text mining techniques, come into prominence. The application of both text mining and machine learning techniques together on data analysis provides decent solutions. For that purpose, this book is prepared with four major chapters discussing various aspects of data analysis with text mining methods, such as clustering, classification, sentiment analysis, and prediction tasks implemented in the Python programming language.

Kitabın Özellikleri
Stok Kodu:
9786254391736
Boyut:
14x21
Sayfa Sayısı:
124
Basım Yeri:
Ankara
Baskı:
1
Basım Tarihi:
2021-02
Kapak Türü:
Ciltsiz
Kağıt Türü:
1. Hamur
Dili:
İngilizce
Kategoriler:

Over the last two decades, the amount of existing data sources in the world have dramatically increased due largely to digitalization. In parallel, data analysis has become a crucial topic for researchers in many areas. One of the essential perspectives in data analysis is text mining. In various forms, textual data is the most generated data element compared to multimedia data. Since the available data sizes are exponentially increasing, we need intelligent computational methodologies to handle massive datasets. Data mining approaches, specifically text mining techniques, come into prominence. The application of both text mining and machine learning techniques together on data analysis provides decent solutions. For that purpose, this book is prepared with four major chapters discussing various aspects of data analysis with text mining methods, such as clustering, classification, sentiment analysis, and prediction tasks implemented in the Python programming language.

Axess Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
1 -    -   
2 65,91    131,82   
3 44,76    134,29   
6 23,41    140,45   
9 16,15    145,38   
QNB Finansbank Kartları
Taksit Sayısı Taksit tutarı Genel Toplam
1 -    -   
2 65,91    131,82   
3 45,46    136,38   
6 23,41    140,45   
9 16,15    145,38   
Ziraat Bankkart Combo
Taksit Sayısı Taksit tutarı Genel Toplam
1 -    -   
2 65,91    131,82   
3 45,17    135,52   
6 23,41    140,45   
9 16,29    146,61   
Bonus Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
1 -    -   
2 65,91    131,82   
3 45,58    136,75   
6 23,41    140,45   
9 16,29    146,61   
Paraf Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
1 -    -   
2 65,91    131,82   
3 45,58    136,75   
6 24,43    146,61   
9 16,29    146,61   
Maximum Kartlar
Taksit Sayısı Taksit tutarı Genel Toplam
1 -    -   
2 65,91    131,82   
3 41,48    124,43   
6 23,41    140,45   
9 16,29    146,61   
World Card - 100 TL ve üzerine + 3 taksit
Taksit Sayısı Taksit tutarı Genel Toplam
Tek Çekim 123,20    123,20   
2 65,91    131,82   
3 45,17    135,52   
6 23,41    140,45   
9 16,29    146,61   
Yorum yaz
Bu kitabı henüz kimse eleştirmemiş.
Kapat